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Figure 4. Fluorescence titration of calf thymus DNA with BMSp. The 
concentration of DNA was 1.726 X 10-6 M in base pairs. 

ethidium/two BP)31 and in accordance with the nearest 
neighbor exclusion model.9 

The calculation of the binding affinity of bisintercaiated 
BMSp from the fluorescence and spectrophotometric titration 
data requires a knowledge of the dependence of the spectral 
and fluorescence properties of the bisintercaiated species as 
a function of the degree of saturation and the effect of other 
bound BMSp species on the quantum yield of the bisinterca­
iated species. These uncertainties plus the inability to detect 
sufficient unbound BMSp renders the traditional Scatchard 
analysis unreliable. Nevertheless, a minimum binding constant 
can be estimated which is compatible with both the fluores­
cence and spectrophotometric titration data. We find that the 
binding constant of bisintercaiated BMSp is > 4 X 109 M - 1 , 3 2 

which can be compared with 3 X l O 5 M - 1 35 for ethidium (EB) 
under similar conditions. 
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Influence of Alkyl Substitution on 
the Trans -» Cis Photoisomerization of 
aW-frans-Retinal and Related Polyenes 

Sir: 

Although the primary photochemical step and subsequent 
sequence of chemical events following absorption of a photon 
of light by the visual protein rhodopsin is uncertain,1 ~8 it is 
known that the 1 l-m-retinyl chromophore1 undergoes a cis 
—• trans isomerization2,3 forming all-trans- retinal (structure 
1) and the protein opsin as the final products4 of the rhodopsin 
bleaching process. To better understand the nature of the 
factors that may influence the photochemically initiated 
transformation of the chromophore in rhodopsin, we have 
examined the solution photochemical properties of the isomeric 
retinals9-10 and related synthetic polyenes. The photochemical 
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Table I. Photoisomerization of Synthetic Retinals 

All-trans Retinal, 1 

Compda 

all-trans-Ret'm3ilc 

all-trans-13-Demethvl-
retinal 

all-trans-14-Methyl-
retinal 

all-trans-10,14-Dimeth-
ylretinal 

trans —• cis 

0.08 ± 0.02 
0.022 ± 0.003 

0.26 ± 0.035 

0.40 ± 0.04 

<t>?\b 

trans -* 
9-cis 

0.015 
0.01 

0.01 

0.10 

trans -* 
13-cis 

0.065 
0.00 

0.25 

0.30 

All-trans-13-demethy!retinal. 2 

" 5 X 10-5 to 2 X 10-4 M retinal in hexane. * 350-nm excitation, 
7-nm band pass; 150-W Xe lamp; average of at least eight determi­
nations; 2-5% conversions. c Data from ref 10. 

All-trans-14-methylretinal, 3 

All-trans-10.14-dimethvlretinal, 4 

properties of a//-?ran.r-13-demethylretinal (2), all-trans-
14-methylretinal (3), and all-trans-10,14-dimethylretinal (4) 
have been investigated, including measurement of the quantum 
efficiencies of the trans —• cis photoisomerization reactions and 
determination of the primary product ratios by using high 
pressure liquid chromatographic methods. An interesting 
structure/photochemical reactivity relationship is observed 
for compounds 1-4. The photochemistry of polyenes 1-4 is 
consistent with the theory of photochemical isomerization of 
linear polyenes developed by Kushick and Rice.11 

all-trans-Retina\ was purchased from the Sigma Chemical 
Co. The all-trans isomers of 13-demethylretinal,12 14-meth-
ylretinal,13'14 and 10,14-dimethylretinal were synthesized 
according to literature methods, isolated on a Waters Prep 
LC/System 500 liquid chromatograph, and identified using 
NMR spectra recorded on a 250-MHz NMR spectrometer. 
Polyenes 1-4 were then purified to >99.5% on a Waters Model 
ALC/GPC 204 liquid chromatograph. Absorption spectra 
were recorded on a Cary 14 spectrophotometer. Aerated 
samples were irradiated in quartz cuvettes using the 150-W 
Xenon lamp and lk-m monochromator of an Aminco-Bowman 
spectrofluorimeter. Photoproducts were identified by HPLC 
retention times15 and product ratios from peak areas obtained 
by multiple planimeter tracings. Quantum yields of photo­
isomerization (4>P\) were determined by using ferrioxalate 
actinometry,16 percentage conversions from HPLC curves, and 
the equation used in our previous studies.9 

The photochemical properties of retinals 1-4 have been 
examined in hexane solutions at room temperature. Table I is 
a summary. Upon 350-nm excitation of polyenes 1-4 the fol­
lowing results are obtained: (a) the 9-cis and 13-cis isomers of 
retinals 1, 3, and 4 are formed as primary photoproducts, but 
the 9-cis to 13-cis product ratios differ substantially; (b) the 
absolute quantum yields of the trans -»• cis photoisomerization 
processes (0P]) also are substantially different; (c) the quantum 
yields for the trans —*• 9-cis photoisomerization processes of 

compounds 1-3 are equal within our experimental error; and 
(d) polyene 2 yields 1-cis-,ll 9-cis-, and 11-CM-13-demeth­
ylretinal as primary photoproducts in the approximate ratio 
of 2:2:1, respectively.18 

In polyenes 1-3 there are no substitutional changes at the 
9,10 carbon-carbon double bond and the 4>pi values for the 
trans —*• 9-cis processes are unaffected. Substitution at the 
13,14 carbon-carbon double bond of compounds 1-3 differs 
in that the carbon atoms of the double bond have two, one, and 
zero carbon-hydrogen bonds in polyenes 2,1, and 3, respec­
tively, and </>pi values for the trans —• 13-cis processes are 0.00, 
0.065, and 0.25, respectively. a//-r/wtf-10,14-Dimethylreti-
nal (4) possesses substitutional differences at both the 9,10 and 
13,14 carbon-carbon double bonds, whereby methyl groups 
have replaced the C-10 and C-14 hydrogen atoms of all-
trans-retinal (1). We find that the ^p1 values for the trans -* 
9-cis and the trans —• 13-cis processes of 4 are much greater 
than for comparable processes in 1. Furthermore, we find that 
<t>p] values for the trans -* 13-cis processes in polyenes 3 and 
4 are identical within our experimental reproducibility. 

Kushick and Rice1' have recently developed a model for the 
photochemical isomerization of linear polyenes. Using buta­
diene as an example, they conclude that the torsional modes 
of conjugated polyenes are poor acceptors of electronic exci­
tation energy, which is preferentially directed into the vibra­
tional modes of the molecule. Based upon the theoretical ap­
proach of Robinson and Frosch,20 it is generally believed that 
the carbon-hydrogen stretching vibrations are the most im­
portant modes for radiationless processes in aromatic hydro­
carbons. Froehlich and Morrison21 have reported that the 
quantum yields of fluorescence for a series of monosubstituted 
alkylbenzenes decreased linearly as the number of/5-hydrogen 
atoms of the substituent increased—thought to be a result of 
enhancements in the nonradiative rate constants. To the extent 
that the extrapolation that carbon-hydrogen stretching vi­
brations are important radiationless modes in linear polyenes 
is valid, then the results of our quantum yield measurements 
are understandable. As the number of available olefinic car­
bon-hydrogen stretching vibrations is reduced, torsional modes 
become important and the quantum yield of trans —• cis pho­
toisomerization about that carbon-carbon double bond is 
markedly increased. Thus, our experimental results are con­
sistent with the theory of photochemical isomerization of linear 
polyenes developed by Kushick and Rice.11 

Owing to the importance of the 11-cw-retinyl chromophore. 
to the visual process,1"5 the presence of the retinyl chromophore 
in Halobacterium halobium,22 and the employment of vitamin 
A derivatives for medicinal purposes, we are continuing to 
investigate the photochemical properties of isomers of polyenes 
1-4 and related compounds. We hope to obtain additional 
information on the structure/photochemical reactivity rela­
tionships for this class of linear polyenes. 
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Polarized Single-Crystal 
Spectroscopic Studies of Oxyhemerythrin 

Sir: 

We report the room and low temperature polarized single-
crystal electronic spectra of oxyhemerythrin and methem-
erythrin fluoride and azide. A number of the absorption bands 
are found to be extremely polarized, and a comparison between 
the oxy and met forms allows the oxygen to iron charge-
transfer transition to be determined to be dominantly polarized 
perpendicular to the Fe-Fe axis. Using a transition dipole 
vector coupling model, the observed polarizations require that 
the Fe-O axis make only a small projection on the Fe-Fe axis, 
thereby placing strong restrictions on the proposed modes of 
oxygen binding to the active site. 

The data available on hemerythrin, the binuclear iron 
oxygen binding protein, is rapidly evolving to a point where a 
detailed picture of the active site can be obtained. In particular, 
resonance Raman studies1 have shown that O2 binds assym-
metrically as peroxide to the binuclear iron site, which has 
further been shown to be antiferromagnetically coupled 
high-spin Fe(III)'s.2 Recent x-ray crystal structure determi-

Figure 1. Polarized single-crystal absorption spectra of hemerythrin: (a) 
oxyhemerythrin; (b) methemerythrin fluoride; (c) methemerythrin azide. 
Polarizations and temperatures are indicated as follows: (—) 273 K, 
parallel; (---) 77 K, parallel; (—-) 273 K, perpendicular; (••••) 77 K, 
perpendicular. Polarizations refer to the orientation of the E vector relative 
to the needle axis. 

nations3 have shown this site to be approximately a trigonal 
antiprism with the Fe-Fe axes for all eight of the subunits in 
the octamer approximately parallel.33 This structure is ideal 
for polarized single-crystal spectroscopic studies which should 
provide some extremely detailed insight into this active site. 
Further, the dilute yet oriented nature of the active site of 
protein crystals makes them ideally suited for obtaining po­
larized spectra4 of charge-transfer and other intense absorption 
processes. 

Hemerythrin crystals suitable for spectroscopic study were 
prepared by dialysis of the purified protein5 (from Golfingia 
gouldii) against 15% ethanol. The crystals obtained were of 
the approximate dimensions 2 X 0.6 X 0.1 mm. These small 
crystals required modification of our McPherson RS-10 
spectrometer for low temperature polarized studies, as de­
scribed elsewhere.6 The orientation of the Fe-Fe axis in these 
crystals was determined by comparison with those forms used 
for x-ray analysis. The colors observed under polarized light 
for the crystal form of the met azide derivative used in the 
structural studies3b require that the intense visible absorption7 

be dominantly polarized perpendicular to the crystallo-
graphically defined Fe-Fe axis. As shown in Figure Ic, the 
intense 480-nm band in our met azide crystals is strongly po­
larized perpendicular to the needle axis, defining the Fe-Fe 
vector to be oriented along the needle axis. 
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